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Abstract The global behavior of solutions is described for the smallest chemical
reaction system that exhibits a Hopf bifurcation, discovered in [12]. This three-dimen-
sional system is a competitive system and a monotone cyclic feedback system. The
Poincaré–Bendixson theory extends to such systems [2,3,6,8] and a Bendixson crite-
rion exists to rule out periodic orbits [4].

Keywords Competitive system · Uniform persistence · Monotone cyclic feedback
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1 Introduction and main results

In [12], Wilhelm and Heinrich discover the “smallest chemical reaction system” which
may exhibit a Hopf bifurcation. Like the famous Lorenz system, it is a three dimen-
sional system with only a single quadratic nonlinearity. The Hopf bifurcation is studied
in detail in [13] using center manifold and normal form techniques which establish
the existence of a stable periodic orbit very near the bifurcation point. However, as
they point out, their analysis does not preclude that chaotic behavior may occur in
this simple system. Sprott [10] has cataloged many other three dimensional systems
with quadratic nonlinearities which can have chaotic dynamics. However, we will
show that this particular chemical reaction system does not support chaos. We give a
fairly complete analysis of the global dynamics of the system of ordinary differential
equations studied in [13]. It is given by the following equations:
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x ′ = kx − k2xy

y′ = k5z − k3 y (1.1)

z′ = k4x − k5z

where ki > 0, 1 ≤ i ≤ 5 and k = k1 A − k4 where A is the concentration of “the
outer reactant of the autocatalytic reaction”. The ki are rate constants and k need
not be positive; see [12]. Variables x, y, z denote concentrations and therefore are
nonnegative.

The scaling x̄ = x/a, ȳ = y/b, z̄ = z/c and the choice k2b = 1, k5c =
k3b, k4a = k5c leads to the system:

x ′ = kx − xy

y′ = k3(z − y) (1.2)

z′ = k5(x − z)

where we have dropped the bar over variables for simplicity. Our focus is on the
dynamics exhibited by (1.2) in the nonnegative octant R

3+.
System (1.2) is a competitive system because the signed undirected incidence graph

of its Jacobian matrix has a single loop with two positive feedbacks and one negative
one:

x
+−→ z

+−→ y
−−→ x

See [3,8]; the change of variables z → −z gives the system the canonical form with
all off-diagonal entries of the Jacobian being non-positive. Since it is three dimen-
sional, the celebrated Poincaré–Bendixon theorem extends to its solutions by a result
of Hirsch [2,3,8]: A compact omega or alpha limit set that contains no equilibrium is
a periodic orbit. In fact, system (1.2) is also a monotone cyclic feedback system [6],
for which the Poincaré–Bendixon theorem also holds (regardless of the dimension of
the system). The recent paper [11] proposes an alternative smallest chemical reaction
system supporting a Hopf bifurcation that is also a competitive quadratic system.

We note that 0 is the unique equilibrium of (1.2) if k ≤ 0; it is asymptotically
stable if k ≤ 0 and unstable when k > 0. In the latter case, the stable manifold of 0
in R

3+ is S = {(x, y, x) ∈ R
3+ : x = 0}. If k > 0, there is an additional equilibrium

E = k(1, 1, 1) which is asymptotically stable if k < k3+k5 and unstable if k > k3+k5
with a pair of complex conjugate eigenvalues with positive real part and one negative
eigenvalue.

Part (a) of the following result was proved in [13] using a linear Lyapunov function.

Theorem 1.1 The following hold for (1.2):
(a) If k ≤ 0, every solution converges to 0.
(b) If 0 < k < k3 + k5, then every solution except those on S converge to E.
(c) If k > k3 + k5, then every solution not starting on S or on the one-dimen-

sional stable manifold of E, converges to a nontrivial periodic orbit. At least one
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periodic orbit is orbitally asymptotically stable and the number of periodic orbits
is finite.

Moreover, if k > 0 then any solution not starting in S satisfies

lim
T →∞

1

T

∫ T

0
u(s)ds = k, u = x, y, z. (1.3)

The main open problem concerning the dynamics of (1.2) is the number of periodic
orbits in case (c). Numerical simulations suggest there is only one.

The geometry of the stable manifold of E is described in the following result. It is
tangent at E to the eigenvector with sign pattern (+,+,−) and has certain monoto-
nicity properties due to the monotonicity of the time-reversed system.

Proposition 1.2 Let k > k3 + k5. Then the stable manifold of E in R
3+ consists

of E and two monotone solutions pu(t) = (xu(t), yu(t), zu(t)), t ∈ [0,∞) and
pl(t) = (xl(t), yl(t), zl(t)), t ∈ [0,∞).

pu satisfies pu(0) = (xu(0), 0, zu(0)) with 0 < xu(0) < k < zu(0), pu(∞) = E
and xu, yu are strictly increasing while zu is strictly decreasing. Therefore, the graph
of pu belongs to [0, k] × [0, k] × [k,∞).

pl satisfies pl(0) = (xl(0), yl(0), 0) with xl(0), yl(0) > k, pl(∞) = E and xl , yl

are strictly decreasing while zl is strictly increasing. Therefore, the graph of pl belongs
to [k,∞) × [k,∞) × [0, k].

As a consequence of Proposition 1.2, the unstable manifold of 0 connects 0 to a
nontrivial periodic solution in case (c) of Theorem 1.1; it cannot be a heteroclinic orbit
connecting 0 to E .

Theorem 1.3 System (1.2) has a non-empty compact invariant set A that attracts all
bounded subsets of R

3+.
If k ≤ 0, then A = {0}.
If k > 0. Then A ⊂ [0, M]3 where M = k(k+k5)(k+k3)

k3k5
.

Theorem 1.4 If k > 0, then (1.2) is uniformly persistent, i.e., ∃η > 0 such that:

min{x(0), y(0), z(0)} > 0 ⇒ lim inf
t→∞ min{x(t), y(t), z(t)} > η. (1.4)

The attractor A is the disjoint union A = {0} ∪ C ∪ A1 where:

(i) {0} attracts all bounded subsets of S.
(ii) A1 is a compact invariant subset of the interior of R

3+ that attracts all compact
subsets of R

3+ that do not intersect S.
(iii) C is the one-dimensional unstable manifold of {0} which connects 0 to A1.

2 Proofs

Proof Proof of Theorem 1.3. Let φ(t, p) denote the solution of (1.2) which at t = 0 is
at p = (x(0), y(0), z(0)). If k ≤ 0, then x ′ ≤ 0 and it is trivial to show that A = {0}.
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Assume that k > 0. According to Theorem 2.33 in [9], we must show that (1.2) is
point dissipative and for every bounded set B there exists tr ≥ 0 such that φ([tr ,∞)×
B) is bounded.

We start by showing that it is point dissipative. If x(0) = 0, then x(t) = 0 for all t
and there exists η, α > 0 such that y(t) + z(t) ≤ η(y(0) + z(0))e−αt . Assume that
x(0) > 0. Then direct computation shows that

(y/x)′ ≥ k3(z/x) − (k + k3)(y/x) (2.1)

(z/x)′ ≥ k5 − (k + k5)(z/x)

It follows that (z/x)∞ ≥ k5
k+k5

and (y/x)∞ ≥ k3k5
(k+k3)(k+k5)

where f∞ = lim inf t→∞
f (t). Consequently, for every ε > 0, there exists t0 > 0 such that

x ′ = kx − x2(y/x) ≤ kx − mεx2, t > t0

where mε = k3k5
(k+k3)(k+k5)

− ε. Hence, x∞ = lim supt→∞ x(t) ≤ k/mε and, since
ε > 0 is arbitrary, x∞ ≤ M . Using this estimate and the differential equation for z
immediately yields z∞ ≤ M ; using this last estimate and the differential equation for
y yields y∞ ≤ M . Thus, we have shown that all points are attracted to the bounded
set [0, M]3 and (1.2) is point dissipative.

Now we identify a family of positively invariant bounded sets. Let 0 < σ ≤ k5
k+k5

,

0 < ρ ≤ k3σ
k+k3

, and K ≥ k/ρ. Define

B(σ,ρ,K ) = {(x, y, x) ∈ [0, K ]3 : x = 0 or z/x ≥ σ and y/x ≥ ρ}

We claim that B(σ,ρ,K ) is positively invariant. Indeed, integrating the second inequality
(2.1) leads to

(z/x)(t) ≥ k5

k + k5
(1 − e−(k+k5)t ) + e−(k+k5)t (z/x)(0) ≥ σ (2.2)

for any solution starting in B(σ,ρ,K ) with x(0) �= 0. Similarly, using that (z/x)(t) ≥ σ

in the first inequality (2.1) leads to

(y/x)(t) ≥ k3σ

k + k3
(1 − e−(k+k3)t ) + e−(k+k3)t (y/x)(0) ≥ ρ.

As x ′ = kx − x2(y/x) ≤ x(k − ρx) ≤ 0 when x = K , z′ = k5(x − z) ≤ 0 when
z = K and 0 ≤ x ≤ K , and y′ = k3(z − y) ≤ 0 when y = K and 0 ≤ z ≤ K , the
positive invariance of B(σ,ρ,K ) follows.

Finally, we show that ∀L > 0 there exists 0 < σ <
k5

k+k5
, 0 < ρ < k3σ

k+k3
, and

K ≥ k/ρ such that φ(2, [0, L]3) ⊂ B(σ,ρ,K ). Since B(σ,ρ,K ) is bounded and positively
invariant, this proves that φ([2,∞) × [0, L]3) is bounded. Hence, bounded sets have
uniformly bounded orbits.

123



J Math Chem (2012) 50:989–995 993

Let (x(0), y(0), z(0)) ∈ [0, L]3 and x(0) > 0. Integrating the second of (2.1) gives

z(t)

x(t)
≥ k5

k + k5
(1 − e−(k+k5)), t ≥ 1.

Let σ be the right side of the above inequality and note that σ <
k5

k+k5
. Substituting

this estimate into the first of (2.1) and integrating leads to

y(2)

x(2)
≥ k3σ

k + k3
(1 − e−(k+k3))

Let ρ be the right hand side of the above inequality and note that ρ < k3σ
k+k3

. Now
we can choose K > k/ρ so large that x(2), y(2), z(2) ≤ K holds for every point
(x(0), y(0), z(0)) ∈ [0, L]3. It follows that for every point (x(0), y(0), z(0)) ∈
[0, L]3, we have (x(2), y(2), z(2)) ∈ B(σ,ρ,K ). ��
Proof Proof of Proposition 1.2. The time reversed system of (2.1) is a monotone
dynamical system with respect to the partial order induced by the octant K = {(x, y, z):
x, y ≥ 0, z ≤ 0}. So we make use of Theorem 2.8 in [7]. By irreducibility of the Jaco-
bian matrix at E , there is an eigenvector v ∈ K with nonzero components. Moreover,
the unstable manifold of E for the time-reversed system consists of E and two strictly
monotone trajectories Pu ∈ E − K and Pl ∈ E + K that are described in Theorem
2.8 in [7]. The monotone trajectory Pu must exit R

3+ through the y = 0 hyperplane
because the derivative of y is negative and bounded away from zero. ��
Proof Proof of Theorem 1.4. We employ Theorem 8.17 in [9], using the notation
developed there. Let p = (x, y, z) ∈ R

3+ and ρ(p) = min{x, y, z}. X0 = {p ∈ R
3+ :

ρ(φ(t, p)) = 0, t ≥ 0} consists of the stable manifold S of 0. The requisite compact-
ness assumption (H) of Theorem 8.17 follows from Theorem 1.3. � = ∪p∈X0ω(p) =
{0} where ω(p) denotes the omega limit set of p. M ≡ {0} is obviously an acyclic
covering of � and it is an isolated invariant set in R

3+ because 0 is a hyperbolic equi-
librium (Hartman–Grobman Theorem). Finally, M is weakly ρ-repelling, meaning
that there is no p ∈ R

3+ such that ρ(p) > 0 and φ(t, p) → M as t → ∞. This
follows because the stable manifold of 0 is exactly the x = 0 facet S where ρ = 0.
Consequently, we may apply Theorem 8.17 in [9] to conclude that φ is uniformly
weakly ρ-persistent: ∃η > 0 such that ρ(p) > 0 ⇒ lim supt→∞ ρ(φ(t, p)) > η.
We conclude uniform strong persistence, i.e., replacing limsup by liminf in the above
implication, by invoking Theorem 4.5 in [9].

The partition of the attractor A = {0} ∪ C ∪ A1 is a consequence of Theorem 5.7
in [9]. ��
Proof Proof of Theorem 1.1. Part (a) was proved in [13]. Part (c) follows from Theo-
rems 1.1 and 1.2 of [14] where we check that the determinant of the Jacobian at E is
−kk3k5 < 0.

The final assertion uses the uniform persistence established in Theorem 1.4, which
implies that the set D = [η, M]3 is an absorbing set for positive solutions of (1.2).
Since 1

T

∫ T
0

x ′
x ds = 1

T ln(x(T )/x(0)) → 0 as T → ∞ because x is bounded and
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bounded away from zero, we see from the differential equation that limT →∞ 1
T

∫ T
0 (k−

y(s))ds = 0. Indeed, this limit is uniform for all solutions starting in D because
| ln(x(T )/x(0))| is uniformly bounded on D. Thus,

lim
T →∞

1

T

∫ T

0
y(s)ds = k

uniformly for solutions in D. The other limits follow more easily and they too are
uniform in D.

Part (b) is more technical. We use the geometric approach of ruling out periodic
orbits developed in [4] which uses the second additive compound D f (p)[2] of the
Jacobian matrix D f (p), where f (p) denotes the vector field (1.2):

D f (p)[2] =
⎛
⎝ k − y − k3 k3 0

0 k − y − k5 −x
−k5 0 −(k3 + k5)

⎞
⎠

See, e.g., formula for D f (p)[2] in appendix of [5]. As k < k3 + k5, we may find
ε ∈ (0, 1/2) such that k/(1 − 2ε) < k3 + k5. Consider the 3 × 3 matrix-valued
function p → A(p) where A(p) is a diagonal matrix with diagonal entries (1 −
2ε)/x, (1 − ε)/x, −1/k5. Using the notation of [4], we compute the matrix function
B(p) = A f A−1 + AD f (p)[2] A−1 where A f is the directional derivative of A with
respect to vector field f . We find that

B(p) =
⎛
⎝ −k3 k3

1−2ε
1−ε

0
0 −k5 k5(1 − ε)
x

1−2ε
0 −(k3 + k5)

⎞
⎠ (2.3)

The Lozinskiĭ measure μ(B) relative to the norm |p| = max{|x |, |y|, |z|} is (see pg
41 of [1]):

μ(B) = max

{
−εk3/(1 − ε),−εk5,

x

1 − 2ε
− (k3 + k5)

}

Now we use that limT →∞ 1
T

∫ T
0 x(s)ds = k is uniform for all orbits starting in the

absorbing set B and that k/(1 − 2ε) < k3 + k5 to conclude that

q̄2 = lim sup
T →∞

sup
p∈D

1

T

∫ T

0
μ(B(φ(s, p)))ds < 0.

Theorem 3.1 of [4] implies that there can be no nontrivial periodic orbit of (1.2). By
the Poincaré–Bendixson theorem for competitive three dimensional systems [2,3,8],
E attracts all solutions not starting on S. ��
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